Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting.

نویسندگان

  • Ying-Yu Huang
  • Oliver Rinner
  • Patrik Hedinger
  • Shih-Chii Liu
  • Stephan C F Neuhauss
چکیده

A large fraction of homozygous zebrafish mutant belladonna (bel) larvae display a reversed optokinetic response (OKR) that correlates with failure of the retinal ganglion cells to cross the midline and form the optic chiasm. Some of these achiasmatic mutants display strong spontaneous eye oscillations (SOs) in the absence of motion in the surround. The presentation of a stationary grating was necessary and sufficient to evoke SO. Both OKR reversal and SO depend on vision and are contrast sensitive. We built a quantitative model derived from bel fwd (forward) eye behaviors. To mimic the achiasmatic condition, we reversed the sign of the retinal slip velocity in the model, thereby successfully reproducing both reversed OKR and SO. On the basis of the OKR data, and with the support of the quantitative model, we hypothesize that the reversed OKR and the SO can be completely attributed to RGC misrouting. The strong resemblance between the SO and congenital nystagmus (CN) seen in humans with defective retinotectal projections implies that CN, of so far unknown etiology, may be directly caused by a projection defect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of zebrafish oculomotor behavior to model human disorders.

To ensure high acuity vision, eye movements have to be controlled with astonishing precision by the oculomotor system. Many human diseases can lead to abnormal eye movements, typically of the involuntary oscillatory eye movements type called nystagmus. Such nystagmus can be congenital (infantile) or acquired later in life. Although the resulting eye movements are well characterized, there is on...

متن کامل

Severity of infantile nystagmus syndrome-like ocular motor phenotype is linked to the extent of the underlying optic nerve projection defect in zebrafish belladonna mutant.

Infantile nystagmus syndrome (INS), formerly known as congenital nystagmus, is an ocular motor disorder in humans characterized by spontaneous eye oscillations (SOs) and, in several cases, reversed optokinetic response (OKR). Its etiology and pathomechanism is largely unknown, but misrouting of the optic nerve has been observed in some patients. Likewise, optic nerve misrouting, a reversed OKR ...

متن کامل

Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae

The vertebrate optokinetic nystagmus (OKN) is a compensatory oculomotor behavior that is evoked by movement of the visual environment. It functions to stabilize visual images on the retina. The OKN can be experimentally evoked by rotating a drum fitted with stripes around the animal and has been studied extensively in many vertebrate species, including teleosts. This simple behavior has earlier...

متن کامل

Illusionary Self-Motion Perception in Zebrafish

Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor...

متن کامل

Individual larvae of the zebrafish mutant belladonna display multiple infantile nystagmus-like waveforms that are influenced by viewing conditions.

PURPOSE Infantile nystagmus syndrome (INS) is characterized by involuntary eye oscillations that can assume different waveforms. Previous attempts to uncover reasons for the presence of several nystagmus waveforms have not led to a general consensus in the community. Recently, we characterized the belladonna (bel) zebrafish mutant strain, in which INS-like ocular motor abnormalities are caused ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 39  شماره 

صفحات  -

تاریخ انتشار 2006